# MAHAMAYA TECHNICAL UNIVERSITY NOIDA



# **Syllabus**

# for

### MASTER OF COMPUTER APPLICATIONS

(Semester-I, Year-1)

(Effective from the Session: 2012-13)

## **Evaluation Scheme for Session: 2012-13**

### MCA –I Year (FIRST SEMESTER)

| ~      |                  |                 | H  | Period | ls |    | ]      | Evalua | tion S | cheme   |       |       |        |
|--------|------------------|-----------------|----|--------|----|----|--------|--------|--------|---------|-------|-------|--------|
| S<br>N | Code             | Subjects        | L  | Т      | Р  | Se | essior | nal    | F      | End Sem | ester | Total | Credit |
|        |                  |                 |    |        |    | CT | TA     |        |        | Th      | Р     |       |        |
| 1      | CA-101           | Problem         | 3  | 1      | 3  | 30 | 20     | 50     | 25     | 100     | 50    | 225   | 6      |
|        |                  | Solving and     |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | Computer        |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | Programming     |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | with C          |    |        |    |    |        |        |        |         |       |       |        |
| 2      | CA-102           | Mathematical    | 3  | 1      | 0  | 30 | 20     | 50     | -      | 100     | -     | 150   | 4      |
|        |                  | Foundation of   |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | Computer        |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | Science         |    |        |    |    |        |        |        |         |       |       |        |
| 3      | CA-103           | Principles of   | 3  | 1      | 0  | 30 | 20     | 50     | -      | 100     | -     | 150   | 4      |
|        |                  | Management      |    |        |    |    |        |        |        |         |       |       |        |
| 4      |                  | Computer        | 3  | 1      | 3  | 30 | 20     | 50     | 25     | 100     | 50    | 225   | 6      |
|        | CA-104           | System Design   |    |        |    |    |        |        |        |         |       |       |        |
| 5      |                  | Energy,         | 3  | 1      | 0  | 30 | 20     | 50     | -      | 100     | -     | 150   | 4      |
|        | CA-105           | Environment and |    |        |    |    |        |        |        |         |       |       |        |
|        |                  | Ecology         |    |        |    |    |        |        |        |         |       |       |        |
| 6      | GA 106           | Professional    | 0  | 1      | 2  | 15 | 10     | 25     | -      | -       | 25    | 50    | 2      |
|        | CA-106           | Communication   |    |        |    |    |        |        |        |         |       |       |        |
| 7      | 7 CA-107 Seminar |                 | 0  | 0      | 2  | 15 | 10     | 25     | -      | -       | 25    | 50    | 1      |
| Tot    | al Mark          | s:              | 15 | 6      | 10 |    |        |        |        |         |       | 1000  | 27     |

## **Evaluation Scheme for Session: 2012-13**

### MCA –I Year (SECOND SEMESTER)

|        |              |                | F  | Period | ls |    | ]      | Evalua | tion S | cheme    |       |       |        |
|--------|--------------|----------------|----|--------|----|----|--------|--------|--------|----------|-------|-------|--------|
| S<br>N | Code         | Subjects       | L  | Т      | Р  | Se | essior | nal    | F      | End Seme | ester | Total | Credit |
|        |              |                |    |        |    | СТ | TA     | TOT    | Р      | Th       | Р     |       |        |
| 1      | CA-201       | Computer       | 3  | 1      | 2  | 30 | 20     | 50     | 25     | 100      | 25    | 200   | 5      |
|        |              | Based          |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Numerical &    |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Statistical    |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Techniques     |    |        |    |    |        |        |        |          |       |       |        |
| 2      | CA-202       | Computer       | 3  | 1      | 0  | 30 | 20     | 50     | -      | 100      | -     | 150   | 4      |
|        |              | networks       |    |        |    |    |        |        |        |          |       |       |        |
| 3      | CA-203       | Fundamentals   | 3  | 1      | 0  | 30 | 20     | 50     | -      | 100      | -     | 150   | 4      |
|        |              | of E-          |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Commerce       |    |        |    |    |        |        |        |          |       |       |        |
| 4      | CA-204       | Data           | 3  | 1      | 3  | 30 | 20     | 50     | 25     | 100      | 50    | 225   | 6      |
|        |              | Structures and |    |        |    |    |        |        |        |          |       |       |        |
|        |              | File Handling  |    |        |    |    |        |        |        |          |       |       |        |
| 5      | CA-205       | Object         | 3  | 1      | 3  | 30 | 20     | 50     | 25     | 100      | 50    | 225   | 6      |
|        |              | Oriented       |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Systems and    |    |        |    |    |        |        |        |          |       |       |        |
|        |              | Programming    |    |        |    |    |        |        |        |          |       |       |        |
|        |              | with C++       |    |        |    |    |        |        |        |          |       |       |        |
| 6      | CA 205       | Technical      | 0  | 2      | 0  | 15 | 10     | 25     | -      | -        | 25    | 50    | 2      |
|        | CA-205       | Writing        |    |        |    |    |        |        |        |          |       |       |        |
| To     | Fotal Marks: |                | 15 | 7      | 8  |    |        |        |        |          |       | 1000  | 27     |

### MCA: CA-101: Problem solving and Computer Programming with C

#### **Objective:**

- Understand the significance of an implementation of a programming language in a *compiler*
- Increase the ability to learn new programming languages
- Increase the capacity to express programming concepts and choose among alternative ways to express things in a programming language

#### **Evaluation Scheme :**

|      |                                                          |   | Peri | ods       |    |    | Evalu  | ation   | Scheme |        |     |   |
|------|----------------------------------------------------------|---|------|-----------|----|----|--------|---------|--------|--------|-----|---|
| Code | Subjects L T P                                           |   | Se   | Sessional |    |    | End Se | emester | Total  | Credit |     |   |
|      |                                                          |   |      |           | СТ | ТА | ТОТ    | Р       | Th     | Р      |     |   |
|      | Problem solving<br>and Computer<br>Programming<br>with C | 3 | 1    | 3         | 30 | 20 | 50     | 25      | 100    | 50     | 225 | 6 |

#### **UNIT 1:**

Introduction to Computer System: Hardware, Software-system software & application software; Introduction to Computing Environment; Introduction to Problem solving and notion of algorithm: Flow charting, Pseudo code, corresponding sample C-program, Testing the code; Number Systems and their conversion: Decimal, Binary and Hexadecimal representations, bit, byte; Character representation: ASCII, sorting order; System software re-visited: machine language, symbolic language, higher level languages, what is a compiler, what is an operating system, what is a linker, what is an editor, error handling; Introduction to program development.

#### **UNIT 2:**

Structure of a C-program, comments, identifiers; Fundamental Data Types: Character types, Integer, short, long, unsigned, single and double-precision floating point, complex, boolean, constants; Basic Input/Output: printf, formatting, scanf, eof errors; Operators and Expressions: Using numeric and relational operators, mixed operands and type conversion, Logical operators, Bit operations, Operator precedence and associatively, Functions in C: standard function, defining a function, inter-function communication- passing arguments by value, scope rules and global variables; Top-down program development.

#### **UNIT 3:**

Conditional Program Execution: Applying if and switch statements, nesting if and else, restrictions on switch values, use of break and default with switch; Program Loops and Iteration: Uses of while-do and for loops, multiple loop variables, assignment operators, using break and continue; Arrays: Array notation and representation, manipulating array elements, using multidimensional arrays, arrays of unknown or varying size

#### **UNIT 4:**

Sequential search, Sorting arrays; Strings, Recursion; Text files, file Input/Output - fopen, fread, etc Structures: Purpose and usage of structures, declaring structures, assigning of structures, Pointers to Objects: Pointer and address arithmetic, pointer operations and declarations, using pointers as function arguments

#### **UNIT 5:**

Familiarization with Linux OS environment: basic OS commands, directory creation, editing, storing and protecting access to files; Text files in Indian languages: keyboarding, editing, searching; The Standard C Preprocessor: Defining and calling macros, utilizing conditional compilation, passing values to the compiler, string handling functions.

| Week       | Lecture 1                                                                                                                                                                                                                                   | Chapter      | Lecture 2                                                                                                          | Chapter      | Lecture 3                                                                                                                   | Chapter      | Lab Meeting                                                                                 |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------------------------------------------------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|--------------|---------------------------------------------------------------------------------------------|
| Week-1     | Introduction to<br>Computer<br>System:<br>Hardware,<br>Software-<br>system<br>software, &<br>application<br>software;<br>Introduction to<br>Computing<br>Environment;                                                                       | Ch-1<br>TB1  | Introduction to<br>Problem solving<br>and notion of<br>algorithm: Flow<br>charting, Pseudo<br>code,                | App C<br>TB1 | corresponding<br>sample C-<br>programme,<br>Testing the<br>code;                                                            | Ch-1<br>TB1  | Get familiar<br>with OS and<br>C compiler<br>Implement<br>and Test<br>Small<br>Routine in C |
| Week-2     | Number<br>Systems and<br>their<br>conversion:<br>Decimal,<br>Binary and<br>Hexadecimal<br>representations,<br>bit, byte;                                                                                                                    | App D<br>TB1 | Number Systems<br>and their<br>conversion:<br>Decimal, Binary<br>and Hexadecimal<br>representations,<br>bit, byte; | App D<br>TB1 | Character<br>representation:<br>ASCII, sorting<br>order                                                                     | App A<br>TB1 | Implement<br>and Test<br>Small<br>Routine in C                                              |
| Week-3     | System<br>software re-<br>visited:<br>machine<br>language,<br>symbolic<br>language,<br>higher lever<br>languages,<br>what is a<br>compiler, what<br>is an operating<br>system, what is<br>a linker, what<br>is an editor,<br>error handling | Ch-1<br>TB1  | Introduction to<br>programme<br>development;<br>Structure of a C-<br>program,<br>comments,<br>identifiers          | Ch-2<br>TB1  | Fundamental<br>Data Types:<br>Character types,<br>Integer, short,<br>long, unsigned,                                        | Ch-2<br>TB1  | Implement<br>and Test a<br>moderate size<br>Routine in C                                    |
| Week-<br>4 | Data Types and<br>Variable<br>single and<br>double-<br>precision<br>floating point,<br>complex,<br>boolean,<br>constants;                                                                                                                   | Ch-2<br>TB1  | Basic<br>Input/Output:<br>printf,<br>formatting,<br>scanf, eof errors;                                             | Ch-2<br>TB1  | Operators and<br>Expressions:<br>Using numeric<br>and relational<br>operators,<br>mixed operands<br>and type<br>conversion, | Ch-3<br>TB1  | Evaluation of<br>Expression<br>Basic I/O                                                    |
| Week-<br>5 | Logical<br>operators, Bit<br>operations,<br>Operator<br>precedence and<br>associatively,.                                                                                                                                                   | Ch-3<br>TB1  | Functions in C:<br>standard<br>function,<br>defining a<br>function,                                                | Ch-3<br>TB1  | Inter-function<br>communication-<br>passing<br>arguments by<br>value, scope<br>rules and global                             | Ch-3<br>TB1  | Evaluation of<br>Expression<br>Function                                                     |

#### Lecture-wise Break-UP

|             |                                                                                                                 |                              |                                                                              |                              | variables; Top-<br>down program<br>development                                                                           |                              |                                                                                                                                  |
|-------------|-----------------------------------------------------------------------------------------------------------------|------------------------------|------------------------------------------------------------------------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
| Week-<br>6  | if and switch statements,                                                                                       | Ch-5<br>TB1                  | nesting if and<br>else, restrictions<br>on switch values,                    | Ch-5<br>TB1                  | use of break<br>and default with<br>switch;                                                                              | Ch-5<br>TB1                  | Iteration                                                                                                                        |
| Week-<br>7  | Repetition<br>structure in C:<br>while-do                                                                       | Ch-6<br>TB1                  | Repetition<br>structure in C:<br>for loops                                   | Ch-6<br>TB1                  | Repetition<br>structure in C:<br>multiple loop<br>variables,<br>assignment<br>operators, using<br>break and<br>continue; | Ch-6<br>TB1                  | Iteration,<br>Function                                                                                                           |
| Week-<br>8  | Arrays: Array<br>notation and<br>representation,<br>manipulating<br>array elements,                             | Ch-8<br>TB1                  | using<br>multidimensional<br>arrays, arrays of<br>unknown or<br>varying size | Ch-8<br>TB1                  | Sequential<br>search, Sorting<br>arrays;                                                                                 | Ch-8<br>TB1                  | Arrays                                                                                                                           |
| Week-<br>9  | Sorting arrays                                                                                                  | Ch-8<br>TB1                  | Strings,                                                                     | Ch-11<br>TB1                 | recursion                                                                                                                | Ch-8<br>TB1                  | Sorting & searching                                                                                                              |
| Week-<br>10 | Recursion                                                                                                       | Ch-6<br>TB1                  | Text files, file<br>Input/Output -<br>fopen, fread, etc                      | Ch-7<br>TB1                  | Structures:Purposeandusageofstructures,declaringstructures,assigningofstructures,                                        | Ch-12<br>TB1                 | Strings,<br>Recursion                                                                                                            |
| Week-<br>11 | Pointers to<br>Objects:<br>Pointer and<br>address<br>arithmetic,                                                | Ch-9<br>TB1                  | pointer<br>operations and<br>declarations,                                   | Ch-9<br>TB1                  | using pointers<br>as function<br>arguments                                                                               | Ch-9<br>TB1                  | Pointers                                                                                                                         |
| Week-<br>12 | Linux OS<br>environment:<br>basic OS<br>commands,                                                               | Ch-1<br>TB4 /<br>Ch-2<br>TB3 | directory<br>creation, storing<br>and protecting<br>access to files          | Ch-2<br>TB4 /<br>Ch-5<br>TB3 | editing,                                                                                                                 | Ch-3<br>TB4 /<br>Ch-6<br>TB3 | Use of Unix<br>platform<br>(making<br>directory,<br>cpy edit and<br>store file,<br>running a<br>program<br>already<br>developed) |
| Week-<br>13 | Text files in<br>Indian<br>languages:<br>keyboarding,                                                           |                              | Text files in<br>Indian<br>languages:<br>editing,<br>searching               |                              | The Standard C<br>Preprocessor:<br>Defining and<br>calling macros,                                                       | App G<br>TB1                 | Hindi text<br>document<br>processing                                                                                             |
| Week-<br>14 | utilizing<br>conditional<br>compilation,<br>passing values<br>to the compiler,<br>string handling<br>functions, | App G<br>TB1                 | Std C Library                                                                | App E<br>TB1                 | Std C Library                                                                                                            | App F<br>TB1                 | Macros,<br>Library                                                                                                               |

#### **Text Books :**

1. Computer Science- A Structured Programming Approach Using C, by Behrouz A. Forouzan, Richard F. Gilberg, Thomson, Third Edition [India Edition], 2007. **[TB1]** 

For Linux:

2. UNIX Concepts and Applications, Das, TMH [TB2]

3.. LiNUX, unleashed, Techmedia [TB3]

3. LINUX : LEARNING THE ESSENTIALS by K. L. JAMES, published by PHI 4. Guide to UNIX and LINUX by Harley Hahn published by TMH

A few web-links for tutorials/resources:

http://www.cprogramming.com/tutorial.html http://www.pixel2life.com/publish/tutorials/760/\_c\_beginner\_examples\_tutorial/ http://www.loirak.com/prog/ctutor.php http://www.ee.surrey.ac.uk/Teaching/Unix/ http://fclose.com/b/linux/3423/tutorials-for-linux-beginners/ http://www.linux-tutorial.info/ http://www.roseindia.net/linux/tutorial/ http://www.tdil.mit.gov.in/

#### MCA: CA-102- MATHEMATICAL FOUNDATION OF COMPUTER SCIENCE

#### PREREQUISITES

There are no prerequisites in terms of courses to attend. Students should be familiar with notions of mathematics

#### **OBJECTIVES:**

The objective of this course are :

- To Introduce Mathematical Logic, especially First Order Logic.
- To introduce proof techniques such as Mathematical Induction and Contradiction.
- Develop an understanding of counting, functions and relations.
- To introduce and study abstract, mathematical models of computation (such as Turing machines, formal grammars, recursive functions), and to use the abstract computation models to study the ability to solve computational problems.

#### **LEARNING OUTCOME**

Techniques introduced in this course will come in handy for courses such as Analysis of Algorithms, Compiler design and NLP

#### **EVALUATION SCHEME**

|      |                                                   | Periods |   |   |    |       | Evalı | ation | Scheme  |        |       |        |
|------|---------------------------------------------------|---------|---|---|----|-------|-------|-------|---------|--------|-------|--------|
| Code | Subjects                                          | L       | Т | Р | Se | ssion | al    |       | End Sen | nester | Total | Credit |
|      |                                                   |         |   |   | СТ | TA    | ТОТ   | Р     | Th      | Р      |       |        |
|      | Mathematical<br>foundation of<br>computer Science | 3       | 1 | 0 | 30 | 20    | 50    | -     | 100     | -      | 150   | 4      |

#### UNIT-I:

#### 8 Hrs

8 Hrs

**Set Theory:** Definition of sets, countable and uncountable sets, Venn Diagrams, proofs of some general identities on sets

**Relation:** Definition, types of relation, composition of relations, Pictorial representation of relation, equivalence relation, partial ordering relation.

**Function:** Definition, type of functions, one to one, into and onto function, inverse function, composition of functions, recursively defined functions.

**Mathematical Induction:** Piano's axioms, Mathematical Induction Discrete Numeric Functions and Generating functions Simple Recurrence relation with constant coefficients, Linear recurrence relation without constant coefficients.

(Text Book 1: Chapters 2, Pages 104 to 258)

#### **UNIT-II:**

Algebraic Structures: Properties, Semi group, Monoid, Group, Abelian group, properties of group, Subgroup, Cyclic group, Cosets, Permutation groups, Homomorphism, Isomorphism and Automorphism of groups

(Text Book 1: Chapters 3 Pages: 270)

**Propositional Logic:** Preposition, First order logic, Basic logical operations, Tautologies, Contradictions, Algebra of Proposition, Logical implication, Logical equivalence, Normal forms, Inference Theory, Predicates and quantifiers,

(Text Book 1: Chapters 1, Pages 1 to 102)

**Posets, Hasse Diagram and Lattices:** Introduction, ordered set, Hasse diagram of partially, ordered set, isomorphic ordered set, well ordered set, properties of Lattices, and complemented lattices.

(Text Book 1: Chapters 4, Page 278 to 390)

#### **UNIT-III**

**Graphs:** Simple graph, multi graph, representation of graphs, Bipartite, Regular, Planar and connected graphs, Euler graphs, Hamiltonian path and circuits, Graph coloring, chromatic number, isomorphism and Homomorphism of graphs.

Tree: Definition, Rooted tree, properties of trees, binary search tree, tree traversal.

(Text Book 1: Chapters 5, Pages 468 to 509)

#### **UNIT-IV**

**Theory of computation**: Introduction, Alphabets, Strings and Languages, Kleene Closure, NFA, DFA, , Conversion of NFA to DFA, Optimizing DFA FA with output: Moore machine, Mealy machine, Conversions. Regular expression (RE) , Definition, Regular expression to FA, Arden Theorem, DFA to Regular expression, Non Regular Languages, Pumping Lemma for regular Languages. Application of Pumping Lemma, Closure properties of Regular Languages.

(Text Book 2: Part II, All Chapters)

#### UNIT-V

Chomsky Hierarchy of language, Context-free grammar (CFG), Pushdown Automata (PDA), equivalence of PDA's and CFG's, Introduction Turing Machine(TM), construction of TM for simple problems. TM as Computer of Integer functions, Universal TM, Recursive and recursively enumerable languages, Halting problem, Introduction to Undecidability, Undecidable problems about TMs.

(Text Book 2: Part III and Part IV)

#### **Text Books:**

- 1) John C Martin "Introduction to Languages and The Theory of Computation", Third edition,, TMH
- 2) Trembley, J.P & R. Manohar, "Discrete Mathematical Structure with Application to Computer Science", TMH

#### **Reference Books :**

- 3) Hopcroft, Ullman, "Introduction to Automata Theory, Languages and Computation", Pearson Education
- 4) Chowdhary, K. R. "Fundamentals of discrete Mathematical Structures', Second Edition, PHI Learning

#### 8 Hrs

8 Hrs

#### 8 Hrs

- 5) Liptschutz, Seymour, "Discrete Mathematics", TMH
- 6) Kenneth H. Rosen, "Discrete Mathematics and its applications", TMH
- 7) Peter Linz," An Introduction to Formal languages and Automata"," Jones & Bartlett Learning

#### Web-links for tutorials/resources: to be added

http://dipqa.com/view/dips/170/automata-theory-questions-turorials/ http://oqls10.typepad.com/blog/2011/12/automata\_theory\_tutorials-83399.html http://math.about.com/od/discretemath/Discrete\_Math.htm

#### Lecture-wise Break-UP

| Week        | Lecture 1                                                                              | Lecture 2                                                                                        | Lecture 3                                                        | Assignments                                                                             |
|-------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| Week-1      | Definition of sets,<br>countable and<br>uncountable sets,<br>Venn Diagrams             | proofs of some<br>general identities on<br>sets,                                                 | Definition, types of<br>relation, composition<br>of relations    | Pictorial<br>representation of<br>relation                                              |
| Week-2      | equivalence relation,<br>partial ordering<br>relation.                                 | Definition, type of<br>functions, one to one,<br>into and onto<br>function, inverse<br>function, | composition of<br>functions,<br>recursively defined<br>functions | Piano's axioms,<br>Mathematical<br>Induction Discrete<br>Numeric Functions              |
| Week-3      | Generating<br>functions Simple<br>Recurrence relation<br>with constant<br>coefficients | Properties, Semi<br>group, Monoid,<br>Group, Abelian<br>group,                                   | properties of group,<br>Subgroup, Cyclic<br>group, Cosets,       | Permutation<br>groups,<br>Homomorphism,<br>Isomorphism and<br>Automorphism<br>of groups |
| Week-4      | Preposition, First<br>order logic, Basic<br>logical operations                         | Tautologies,<br>Contradictions,                                                                  | Algebra of<br>Proposition                                        | Logical<br>implication,<br>Logical<br>equivalence,<br>Normal form                       |
| Week-5      | Inference Theory,<br>Predicates and<br>quantifiers                                     | Lattices, and<br>complemented<br>lattices.                                                       | ordered set, Hasse<br>diagram of partially,<br>ordered set,      | isomorphic ordered<br>set, well ordered set                                             |
| Week-6      | properties of Lattices,<br>and complemented<br>lattices.                               | Simple graph, multi<br>graph, representation<br>of graphs                                        | Regular, Planar and connected graphs                             | Euler graphs,<br>Hamiltonian path<br>and circuits                                       |
| Week-7      | Graph coloring,<br>chromatic number,                                                   | isomorphism and<br>Homomorphism of<br>graphs.                                                    | Definition, Rooted<br>tree, properties of<br>trees               | binary search tree,<br>tree traversal                                                   |
| Week-8      | Introduction,<br>Alphabets, Strings                                                    | Introduction to<br>Langauges                                                                     | Kleene Closure,                                                  | NFA                                                                                     |
| Week-9      | DFA                                                                                    | Conversion of<br>NFA to DFA                                                                      | Optimizing DFA                                                   | Mealy and More<br>Machines                                                              |
| Week-<br>10 | Mealy to More<br>Conversion                                                            | Moore machine to<br>Mealy machine,                                                               | Regular expression                                               | Regular<br>expression to FA,                                                            |

|             |                                                         | Conversions                                             |                                                                               | Arden Theorem                                 |
|-------------|---------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------------------------------------|-----------------------------------------------|
| Week-<br>11 | DFA to Regular<br>expression                            | Non Regular<br>Languages                                | Pumping Lemma<br>for regular<br>Languages.<br>Application of<br>Pumping Lemma | Closure properties<br>of Regular<br>Languages |
| Week-<br>12 | Chomsky Hierarchy of language                           | Context-free<br>grammar (CFG                            | Context-free<br>grammar (CFG                                                  | Pushdown<br>Automata (PDA                     |
| Week-<br>13 | Pushdown<br>Automata (PDA                               | equivalence of PDA's and CFG's                          | Introduction Turing<br>Machine(TM                                             | construction of TM<br>for simple<br>problems  |
| Week-<br>14 | TM as Computer of<br>Integer functions,<br>Universal TM | Recursive and<br>recursively<br>enumerable<br>languages | Halting problem,<br>Introduction to<br>Undecidability                         | Undecidable<br>problems about<br>TMs          |

### MCA: CA-103 PRINCIPLES OF MANAGEMENT

#### **OBJECTIVE:**

Knowledge on the principles of management is essential for all kinds of people in all kinds of organizations. After studying this course, students will be able to have a clear understanding of the managerial functions like planning, organizing, staffing, leading and controlling. Students will also gain some basic knowledge on international aspect of management.

|      |               |   | Periods |   |    |        | Evalu | ation <b>S</b> | Scheme |        |       |        |
|------|---------------|---|---------|---|----|--------|-------|----------------|--------|--------|-------|--------|
| Code | Subjects      | L | Т       | Р | Se | ession | al    |                | End Se | mester | Total | Credit |
|      |               |   |         |   | СТ | TA     | ТОТ   | Р              | Th     | Р      |       |        |
|      | Principles of | 3 | 1       | 0 | 30 | 20     | 50    | -              | 100    | -      | 150   | 4      |
|      | Management    |   |         |   |    |        |       |                |        |        |       |        |

#### **UNIT 1. HISTORICAL DEVELOPMENT**

Definition of Management - Science or Art - Management and Administration - Development of Management Thought - Contribution of Taylor and Fayol - Functions of Management -Types of Business Organization.

(Text Book 1: Chapters 1 and 2, Pages 3 to 24)

#### **UNIT 2. PLANNING**

Nature & Purpose – Steps involved in Planning – Objectives – Setting Objectives – Process of Managing by Objectives - Strategies, Policies & Planning Premises- Forecasting - Forecasting. (Text Book 1: Chapters 3, 4 and 5, Pages 45 to 102)

#### **UNIT 3. ORGANISING**

Nature and Purpose - Formal and informal organization - Organization Chart - Structure and Process - Departmentation by difference strategies - Line and Staff authority - Benefits and Limitations - De-Centralization and Delegation of Authority - Staffing - Selection Process -Techniques - HRD - Managerial Effectiveness.

(Text Book 1: Chapters 7,8,9 and 11, Pages 133 to 190, 217 to 244)

#### **UNIT 4. DIRECTING**

Scope – Human Factors – Creativity and Innovation – Harmonizing Objectives – Leadership – Types of Leadership Motivation – Hierarchy of needs – Motivation theories – Motivational Techniques - Job Enrichment - Communication - Process of Communication - Barriers and Breakdown - Effective Communication - Electronic media in Communication.

(Text Book 1: Chapters 14, 15, 16 and 17, Pages 299 to 384)

#### **UNIT 5. CONTROLLING**

System and process of Controlling – Requirements for effective control – The Budget as Control Technique - Information Technology in Controlling - Use of computers in handling the information - Productivity - Problems and Management - Control of Overall Performance -Direct and Preventive Control - Reporting - The Global Environment - Globalization and Liberalization - International Management and Global theory of Management.

(Text Book 1: Chapters 18, 19, 20, 21 and 22, Pages 393 to 506)

### 8 Hours

### 8 Hours

8 Hours

### 8 Hours

### 8 Hours

#### **TEXT BOOKS**

1. Harold Koontz & Heinz Weihrich "Essentials of Management", Fifth edition, Tata McGraw-Hill, 1998

#### REFERENCES

1 Tripathy PC And Reddy PN, "Principles of Management", Tata McGraw-Hill, 1999. 2. Decenzo David, Robbin Stephen A, "Personnel and Human Reasons Management", Prentice Hall of India, 1996

3. JAF Stomer, Freeman R. E and Daniel R Gilbert, "Management", Pearson Education, Sixth Edition, 2004.

4. Fraidoon Mazda, "Engineering Management", Addison Wesley, 2000.

5. Joseph L Massie "Essentials of Management", Prentice Hall of India, (Pearson) Fourth Edition, 2003.

#### Web Links

http://www.wiziq.com/tutorials/principles-of-management http://nova.campusguides.com/content.php?pid=132346&sid=1493625

#### Week wise Lecture Schedule

| Week   | Lecture 1                                           | Lecture 2                                           | Lecture 3                                                                 | Assignment                                                            |
|--------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Week-1 | Definition of<br>Management -Science<br>or Art      | Management and<br>Administration                    | Development of<br>Management<br>Thought –                                 | Development of<br>Management<br>Thought –                             |
| Week-2 | Contribution of<br>Taylor and Fayol                 | Functions of<br>Management                          | Functions of<br>Management                                                | Types of Business<br>Organization.                                    |
| Week-3 | Nature and Purpose of<br>Planning                   | Steps involved in<br>Planning                       | Objectives – Setting<br>Objectives                                        | Process of Managing<br>by Objectives                                  |
| Week-4 | Strategies of Planning                              | Policies & Planning<br>Premises                     | Forecasting                                                               | Forecasting                                                           |
| Week-5 | Formal and informal organization                    | Organization Chart                                  | Structure and<br>Process –<br>Departmentation by<br>difference strategies | Line and Staff<br>authority                                           |
| Week-6 | Benefits and<br>Limitations                         | De-Centralization<br>and Delegation of<br>Authority | – Staffing –<br>Selection Process -<br>Techniques                         | HRD – Managerial<br>Effectiveness.                                    |
| Week-7 | Human Factors –<br>Creativity and<br>Innovation     | Harmonizing<br>Objectives                           | Leadership – Types<br>of Leadership<br>Motivation                         | Hierarchy of needs                                                    |
| Week-8 | Motivation theories –<br>Motivational<br>Techniques | Job Enrichment –<br>Communication                   | Process of<br>Communication –<br>Barriers and<br>Breakdown                | Effective<br>Communication –<br>Electronic media in<br>Communication. |

| Week 9      | System and process of<br>Controlling –<br>Requirements for<br>effective control | The Budget as<br>Control Technique                                                  | Information<br>Technology in<br>Controlling         | Use of computers in<br>handling the<br>information –<br>Productivity |
|-------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------|
| Week-<br>10 | Problems and<br>Management                                                      | Control of Overall<br>Performance – Direct<br>and Preventive<br>Control – Reporting | TheGlobalEnvironment-GlobalizationandLiberalization | International<br>Management and<br>Global theory of<br>Management.   |

### MCA: CA-104-COMPUTER SYSTEM DESIGN

#### Learning Objective:

**1.** Students will learn the fundamentals of computer organization and its relevance to classical and modern problems of computer design

**2.** Students will be able to identify where, when and how enhancements of computer performance can be accomplished.

**3.** Students will learn the sufficient background necessary to read more advance texts as well as journal articles on the field.

**4.** Student will see how to use concepts of computer organization in real-life settings using various PC performance improvements.

5. Students will also be introduced to more recent applications of computer organization in advanced digital systems.

#### **Learning Outcome:**

**1.** Student will learn the concepts of computer organization for several engineering applications.

**2.** Student will develop the ability and confidence to use the fundamentals of computer organization as a tool in the engineering of digital systems.

#### **Evaluation scheme:**

|      |               | Periods |   |   |    |                        | Evalı | ation | Scheme |       |        |   |
|------|---------------|---------|---|---|----|------------------------|-------|-------|--------|-------|--------|---|
| Code | le Subjects   |         | Т | Р | Se | Sessional End Semester |       |       |        | Total | Credit |   |
|      |               |         |   |   | СТ | TA                     | ТОТ   | Р     | Th     | Р     |        |   |
|      | Computer      | 3       | 1 | 3 | 30 | 20                     | 50    | 25    | 100    | 50    | 225    | 6 |
|      | System Design |         |   |   |    |                        |       |       |        |       |        |   |

#### UNIT-1

#### **Data Representation in Computer Systems**

Introduction, Positional Numbering Systems, Converting Between Bases, Signed Integer Representation, Floating-Point Representation

(Textbook 1, Chapter 2, Page no 54 – 120)

#### Arithmetic:

Overview, Fixed Point Addition and Subtraction, Fixed Point Multiplication and Division, Floating Point Arithmetic, High Performance Arithmetic

(Textbook 2, Chapter 3, 61-86)

#### **Boolean algebra and Digital Logic:**

Introduction, Boolean algebra, Boolean Expressions, Boolean Identities, Logic Gates, Digital Components, Combinational Circuits, Sequential Circuits, Karnaugh Maps

(Textbook 1, Chapter 3, Page no 121 – 192)

9 Hrs

9 Hrs

#### UNIT 2

#### **Register and Register transfer :**

Part1- Registers, Micro-operations and Implementations, Part 2 - Counters, Register Cells, Buses, & Serial Operations, Part 3 - Control of Register Transfers

(Textbook 4, Chapter 7)

#### **Processor Organization and Performance:**

Introduction, Number of Addresses, Flow of Control, Instruction Set Design Issues, Microprogrammed Control, Performance

(Textbook 3, Chapter 6, Page no 197 - 247)

#### **Computer Design Basics:**

Part 1 – Data-paths, Part 2 – A Simple Computer

(Textbook 4, chapter 9)

7 Hrs

6 Hrs

#### UNIT-3

#### Memory:

Overview, The Memory Hierarchy, Random Access Memory, Memory Chip Organization, Case Study: Rambus Memory, Cache Memory, Virtual Memory, Advanced Topics, Case Study: The Intel Pentium 4 Memory System

(Textbook 2, Chapter 7, 249 - 302)

#### UNIT-4

UNIT-5

#### **Buses and Peripherals**

Parallel Bus Architectures, Bridge-Based Bus Architectures, Internal Communication Methodologies, Case Study: Communication on the Intel Pentium Architecture, Serial Bus Architectures, Mass Storage, RAID - Redundant Arrays of Inexpensive Disks, Input Devices, Output Devices, Case Study: Graphics Processing Unit, Case Study: How a Virus Infects a Machine

(Textbook 2, Chapter 8, 303 - 352)

#### 9 Hrs

#### Languages and the Machine:

The Compilation Process, The Assembly Process, Linking and Loading, Macros, Quantitative Analyses of Program Execution, From CISC to RISC, Pipelining the Datapath, Overlapping Register Windows, Low Power Coding

(Textbook 2, Chapter 6, 197 - 248)

#### **Performance Measurement and Analysis:**

Introduction, Computer Performance Equations, Mathematical Preliminaries, Benchmarking, CPU Performance Optimization, Disk Performance

(Textbook 1, Chapter 11, Page no 585 – 620)

#### **Text-Books:**

1. The Essentials of Computer Organization and Architecture,

#### Linda Null and Julia Lobur,3<sup>rd</sup> Ed, Jones & Bartlett Learning

2. Computer Architecture and Organization: An Integrated Approach

Miles J. Murdocca and Vincent P. Heuring, John Wiley & Sons, 2007

3. Fundamentals of Computer Organization and Design,

S. P. Dandamudi, Springer, New York, 2003.

#### 4. Logic and Computer Design Fundamentals

Morris mano and Kimi charels 4<sup>th</sup> Edition, Prentice Hall.

#### **Reference Books:**

1. Structured Computer Organization, Andrew S. Tanenbaum 5/E, Pearson

Digital Logic Design

Brian Holdsworth and Clive Woods, 4<sup>th</sup> Ed, Newnes

Web-links

- 1. http://freevideolectures.com/Course/2315/Digital-Computer-Organization/
- 2. http://freevideolectures.com/Course/2277/Computer-Organization
- 3. <u>http://www.mywbut.com/syllabus.php?mode=VT&paper\_id=54&dept\_id=6</u>
- 4. http://www.jblearning.com/catalog/9781449600068/
- 5. http://writphotec.com/mano4/PowerPoint\_Handouts/
- 6. <u>http://www.scs.carleton.ca/sivarama/org\_book/</u>

#### Lecture-wise Break-UP

| Ut | Wk | Lecture 1                                                                                           | Lecture 2                                          | Lecture 3                         | Tutorial                                   |
|----|----|-----------------------------------------------------------------------------------------------------|----------------------------------------------------|-----------------------------------|--------------------------------------------|
|    | 1  | Positional Numbering<br>Systems, Converting<br>Between Bases                                        | Signed Integer<br>Representation,                  | Floating-Point<br>Representation, | Data Representation<br>in Computer Systems |
| 1  | 2  | Fixed Point Addition and<br>Subtraction, Fixed Point<br>Multiplication and<br>Division,             | Floating Point<br>Arithmetic,                      | High Performance<br>Arithmetic    | Arithmetic                                 |
|    | 3  | Boolean algebra, Boolean<br>Expressions, Boolean<br>Identities, Logic Gates,<br>Digital Components, | Combinational<br>Circuits, Sequential<br>Circuits, | Karnaugh Maps                     | Boolean algebra and<br>Digital Logic       |

| Ut | Wk | Lecture 1                                                                                                                                                                                                                                                                                                                                       | Lecture 2                                                           | Lecture 3                                 | Tutorial                             |
|----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| 2  | 4  | <ul> <li>Part 1 - Registers,<br/>Microoperations and<br/>Implementations,</li> <li>Registers and load<br/>enable</li> <li>Register transfer<br/>operations</li> <li>Microoperations -<br/>arithmetic, logic, and<br/>shift</li> <li>Microoperations on a<br/>single register<br/>Multiplexer-based<br/>transfers<br/>Shift registers</li> </ul> | Part 2 - Counters, Register<br>Cells, Buses, & Serial<br>Operations | Part 3 – Control of<br>Register Transfers | Register and<br>Register<br>transfer |
|    | 5  | Number of Addresses                                                                                                                                                                                                                                                                                                                             | Flow of Control                                                     | Microprogrammed                           | Processor                            |

|   | 3-Address Machines<br>2-Address Machines<br>1-Address Machines<br>0-Address Machines<br>The Load/Store<br>Architecture<br>Processor Registers                   | Branching<br>Procedure Calls<br>Instruction Set Design -<br>Issues<br>Operand Types<br>Addressing Modes<br>Instruction Types<br>Instruction Formats | Control<br>H/w Implementation<br>S/w Implementation<br>Performance<br>Performance Metrics<br>Execution Time -<br>Calculation<br>Means of -<br>Performance<br>The SPEC<br>Benchmarks | Organization<br>and<br>Performance |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| 6 | Part 1 – Datapaths<br>• Introduction<br>• Datapath Example<br>• Arithmetic Logic Unit<br>(ALU)<br>• Shifter<br>• Datapath<br>Representation and<br>Control Word | Part 2 – A Simple<br>Computer<br>• Instruction Set<br>Architecture (ISA)<br>• Single-Cycle                                                          | Hardwired Control<br>PC Function<br>Instruction<br>Decoder<br>Example<br>Instruction Execution                                                                                      | Computer<br>Design<br>Basics       |

| Ut | Wk | Lecture 1                                        | Lecture 2            | Lecture 3                          | Tutorial |
|----|----|--------------------------------------------------|----------------------|------------------------------------|----------|
|    | 7  | The Memory Hierarchy,                            | Random Access Memory | Memory Chip<br>Organization        |          |
| 3  | 8  | Case Study: Rambus<br>Memory,                    | Cache Memory,        | Virtual Memory,<br>Advanced Topics | Memory   |
|    | 9  | Case Study: The Intel<br>Pentium 4 Memory System |                      |                                    |          |

| Ut | Wk | Lecture 1                                                          | Lecture 2                                                                                      | Lecture 3                                                                     | Tutorial                 |
|----|----|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|--------------------------|
|    | 9  |                                                                    | Parallel Bus Architectures<br>Bridge-Based Bus<br>Architectures,,                              | Internal<br>Communication<br>Methodologies,                                   |                          |
| 4  | 10 | Case Study:<br>Communication on the Intel<br>Pentium Architecture, | Serial Bus Architectures,<br>Mass Storage, RAID -<br>Redundant Arrays of<br>Inexpensive Disks, | Input Devices, Output<br>Devices, Case Study:<br>Graphics Processing<br>Unit, | Buses and<br>Peripherals |
|    | 11 | Case Study: How a Virus<br>Infects a Machine                       |                                                                                                |                                                                               |                          |

| Ut | Wk | Lecture 1                                            | Lecture 2                        | Lecture 3                                        | Tutorial                   |
|----|----|------------------------------------------------------|----------------------------------|--------------------------------------------------|----------------------------|
|    | 11 |                                                      | The Compilation Process,         | The Assembly Process,                            |                            |
|    | 12 | Quantitative Analyses of<br>Program Execution,       | Linking and Loading,<br>Macros   | From CISC to<br>RISC, Pipelining<br>the Datapath | Languages and the Machine  |
| 5  | 13 | Overlapping Register<br>Windows, Low Power<br>Coding |                                  |                                                  |                            |
|    | 13 |                                                      | Computer Performance Equations,  | Mathematical<br>Preliminaries,                   | Performance<br>Measurement |
|    | 14 | Benchmarking,                                        | CPU Performance<br>Optimization, | Disk Performance                                 | and Analysis               |

### CA-104P: COMPUTER SYSTEM DESIGN LAB

#### Lecture/ Session -wise Lab Plan

| Week              | Lab Session (Duration: 3 Hours)                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Week1             | TTL Characteristics and TTL IC Gates                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Week2             | Multiplexers & Decoders                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Week3             | Flip-Flops: SR-ff, JK-ff, T-ff, D-ff                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Week4             | Counters                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Week5             | Shift Registers                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Week6             | Binary Adders & Subtractors                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Week7             | ALU                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Week8             | Write an ALP to evaluate the expressions:                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| (8086 Assembly    | (i) $a = b + c - d * e$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Language          | (ii) $z = x * y + w - v + u / k$                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Programming(ALP)) | <ul> <li>a. Considering 8-bit, 16 bit and 32 bit binary numbers as b, c, d, e.</li> <li>b. Considering 2 digit, 4digit and 8 digit BCD numbers.</li> <li>Take the input in consecutive memory locations and results also.</li> <li>Display the results by using "int xx" of 8086. Validate program for the boundary conditions.</li> </ul>                                                                                                                                  |
| Week9             | Write an ALP of 8086 to add two exponential numbers which are in IEEE 754 notation. Display the results by using "int xx" of 8086. Validate program for the boundary conditions.                                                                                                                                                                                                                                                                                            |
| Week10            | <ul> <li>Write an ALP of 8086 to take N numbers as input. And do the following operations on them.</li> <li>a) Arrange in ascending and descending order.</li> <li>b) Find max and minimum</li> <li>c) Find average</li> <li>Consider 8-bit, 16 bit binary numbers and 2 digit, 4digit and 8 digit BCD numbers. Display the results by using "int xx" of 8086. Validate program for the boundary conditions.</li> </ul>                                                     |
| Week11            | <ul> <li>Write an ALP of 8086 to take a string of as input (in 'C' format) and do the following Operations on it.</li> <li>a) Find the length</li> <li>b) Find it is Palindrome or not</li> <li>c) Find whether given string substring or not.</li> <li>d) Reverse a string</li> <li>e) Concatenate by taking another sting</li> <li>Display the results by using "int xx" of 8086.</li> </ul>                                                                              |
| Week 12           | <ul><li>Write an ALP of 8086 to find the factorial of a given number as a Procedure and call from the main program which display the result</li><li>Write a procedure to locate a character in a given string. When the first occurrence of the character is located, its position is returned to main. If no match is found, a negative value is returned. The main procedure requests a character string and a character to be located and displays the result.</li></ul> |
| Week13            | Write an assembly language program to encrypt digits as shown below:Input digit:0 1 2 3 4 5 6 7 8 9                                                                                                                                                                                                                                                                                                                                                                         |

|        | Encrypted digit: 4 6 9 5 0 3 1 8 7 2                                                                                                                                                                                                                                                                              |
|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | Your program should accept a string consisting of digits. The encrypted string should be displayed using "int xx" of 8086.                                                                                                                                                                                        |
| Week14 | Write an assembly language program to read a string of characters from<br>the user and that prints the vowel count . Display the results by using "int<br>xx" of 8086.<br>For example: Input: Advanced Programming in UNIX<br>Out put:<br>Vowel count<br>a or A 3<br>e or E 1<br>i or I 3<br>o or O 1<br>u or U 1 |

#### **REFERENCE BOOKS:**

- 1. IBM PC Assembly Language and Programming, P. Abel, 5th Edition, PHI/Pearson Education.
- 2. Introduction To Assembly Language Programming, Sivarama P.Dandamudi, Springer Int. Edition, 2003.
- 3. The 8088 and 8086 Microprocessors: Programming , Interfacing, Software, Hardware and Application, 4<sup>th</sup> edition, W.A. Triebel, A. Singh, N.K. Srinath, Pearson Education

Web Resources :

- 1. http://etienne.ece.jhu.edu/etienne/teaching/ECE491/current/Lectures/chap5.pdf
- 2. <u>http://www.eng.auburn.edu/~nelson/courses/elec3040\_3050/ELEC3050%20HCS12%20Lab1.pd</u> <u>f</u>

#### MCA: CA-105 ENERGY, ENVIRONMENT AND ECOLOGY

1. Work load per week

| a. Lecture (L): 3 hrs/week | <b>Total Lecture Hours per Semester</b> : 42  |
|----------------------------|-----------------------------------------------|
| b. Tutorials (T): 1        | <b>Total Tutorial Hours per Semester</b> : 14 |
| c. Practicals (P): 0       | Total Lab Hours per Semester: 0               |
| d. Total Credits: L+T+P    | 04                                            |

**e.** One credit is defined as one lecture load per week and two hours of self-study to be connected with tutorial, practical work book and assignments.

#### 2. Prerequisites of the course

- (a) Relation between human and nature
- (b) Effect of human activities on environment
- (c) Calculate the intensity of pollutants
- (d) Interaction between nature and human being
- (e) Chemistry of soil, air and water
- (f) Government legislation to control environmental pollution problem

#### 3. **Prerequisites of which next course:** This course is prerequisite for :

- Environment Engineering-I & II.
- Environmental Management for Industries.
- Environmental Geo-technology.
- Industrial pollution control & Environmental Audit

#### 4. **Objectives of the course**

- (a) Develop ability to understand interrelationship between human beings and nature.
- (b) Recognizing basic component of environment i.e. air, water and soil and ecology i.e. energy, producers and decomposers.
- (c) Identify problem of pollution along its solution
- (d) Evaluate quantity and quality of natured resources and how natural resource can be available for a long time.
- (e) Teach students how their activities support environment instead of degradation of environment by anthropogenic activities.
- (f) Introduce students to upcoming environmental pollution control techniques.

#### 5. Learning outcomes from this course

- (a) To be able to plan and prepare suitable methods for the conservation of environmental segments.
- (b) To be able to plan importance of sustainable developments i.e. appropriate use of natural resources.
- (c) To be able to plan and prepare new techniques of development by reducing low rate consumption of natural resources through Environment Impact Assessment (EIA) process.

(d) To be able to understand role of individual NGO and Government for environment protection activities.

### 6. Details of the syllabi:

| Unit | Торіс                                                                                                                                                                                                                                                                                                                                                                                                         | Text Book1<br>Page. No.                                                                                                          | Lectures |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------|
| I    | <ul> <li>Introduction:</li> <li>Definition of environment.</li> <li>Need of public awareness.</li> <li>Segments of environment.</li> </ul>                                                                                                                                                                                                                                                                    | (Text book-1<br>Chapter-1)                                                                                                       | 6        |
|      | <ul> <li>Importance of Environment.</li> <li>Ecosystem- definition, classification and components.</li> <li>Function of ecosystem.</li> <li>Nitrogen and sulphur cycle.</li> </ul>                                                                                                                                                                                                                            | (Text book-2,<br>1.3)<br>(Text book-<br>1,Chapter-2)<br>(Text book-2,                                                            |          |
| П    | <ul> <li>Sustainable Development:</li> <li>Definition, principle, parameter and its challenges.</li> <li>Biodiversity: classification, measurement and conservation.</li> <li>Natural resources: availability &amp; problems.</li> <li>Minerals &amp; Energy Resources</li> <li>Seed suicide and sustainable agriculture.</li> </ul>                                                                          | 1.4.4,1.4.5)<br>Text book-1,chapter-<br>5<br>(T.Book-2,<br>Chapter-9)<br>(T.Book-1,Chapter-<br>7)<br>(Text book-<br>1,Chapter-8) | 6        |
| III  | <ul> <li>Energy:</li> <li>Classification of energy resources.</li> <li>Fossil fuels, nuclear and hydroelectric energy.</li> <li>Solar, wind, biomass, biogas and hydrogen fuel energy.</li> </ul>                                                                                                                                                                                                             | Text book-1,chapter-<br>8                                                                                                        | 4        |
| IV   | <ul> <li>Pollution:</li> <li>Environment pollution.</li> <li>Water pollution,</li> <li>Solid waste management &amp; hazards waste management.</li> <li>Current environmental issues</li> <li>Problem with urbanization and automobile pollution and their control.</li> <li>Adverse effects of Pollution: Climate change; Green house effect, Global warming, Acid rain and ozone layer depletion.</li> </ul> | T.Book-1,Chapter-11<br>(T.Book-1,Chapter-<br>12),T.Book-2,Ch7<br>T.book-1,Ch13                                                   | 8        |
|      |                                                                                                                                                                                                                                                                                                                                                                                                               | T.book-1,Ch18<br>T.BOOK-2,ch2                                                                                                    |          |

| V | Environmental protection & Control Measures:                                |               | í. |
|---|-----------------------------------------------------------------------------|---------------|----|
|   | • Government initiatives i.e. air, water and environmental protection act.  | T.book-1,Ch20 | 6  |
|   | • Role of NGOs.                                                             |               |    |
|   | • Environment Impact Assessment (EIA): definition, methodology and process. |               |    |
|   | • Environmental education: its principle and objectives.                    |               |    |
|   | • Case Studies – Bhopal Gas Tragedy, London Smog.                           |               |    |
|   | • Water Borne and water induce disease, arsenic problem in drinking water   |               |    |

#### **Text Books**

- 1. Environment Studies R Rajagopalan, Oxford Publications.
- 2. Environmental Chemistry A K De, New Age Publications.

#### **Reference Books**

- 1. Environment and Ecology Smriti Srivastava, S K Kataria & Sons.
- 2. Environmental Science G T Miller, Publisher Thomson Asia, Singapore.
- 3. Environmental Change and Globalization: Double Exposures Robin Leichenko and Karen O'Brien, Oxford University Press.
- 4. Essential Environmental Studies S P Mishra & S N Pandey, Ane Book Publications.
- 5. Principles of Environmental Science and Engineering by P Venugoplan Rao, Prentice Hall of India.
- 6. Environmental Science and Engineering by Meenakshi, Prentice Hall of India.
- 7. Introduction to Environmental Science Y Anjaneyulu, B S Publication.
- 8. Environmental Science D B Botkin, E A Keller, Wiley, India.
- 9. Fundamentals of Ecology E P Odum, Publisher Thomson Asia, Singapore.
- Basics of Environment & Ecology Anubhava Kushik, New Age International Publications.
- 11. Environmental Studies Benny Joseph Tata Mcgraw Hill.
- 12. Text book of Environment Science & Technology M Anji Reddy, B S Publication.
- 13. Environmental Studies S N Chary, Macmillan Publishers, India, Ltd.
- 14. Environmental Studies B S Chauhan, University Science Press.
- Internet Link:- (i) <u>www.epa.gov</u> (ii) <u>www.unfcce.int</u> (iii) <u>www.unep.org</u> (iv) www.cpcb.nic.in
  - (v) www.environmental.ksc.nasa.gov

#### MCA: CA-106 PROFESSIONAL COMMUNICATION

| 1. Title of the course:                                                    | PROFESSIONAL COMMUNICATION                    |
|----------------------------------------------------------------------------|-----------------------------------------------|
| <ul><li>2. Work load per week</li><li>a. Tutorial(T): 1 hrs/week</li></ul> | <b>Total Tutorial Hours per Semester</b> : 14 |
| <b>b. Practicals (P):</b> 2 hrs/week                                       | <b>Total Lab Hours per Semester</b> : 28      |
| c. Total Credits: T+P                                                      | 2                                             |

**Objectives of the course:** To impart basic Communication skills to the first year UG students in the English language through rigorous practice and use of various category of common words and how their application in sentences; to enable them to achieve effective language proficiency for their social, professional & inter personal communication both in speaking & writing.

Desired Outcome of the Course: The student must be able to:

- i) Understand and use about 1200 to 1500 General Purpose words of English language,
- ii) Express his /her ideas and thoughts in speech or writing,
- iii) Be able to comprehend, converse, interact and participate in any day-to-day events and situation
- iv) Write grammatically correct sentences for various forms of written communication to express oneself.

#### **Key Concepts:**

Context of Communication, as means of sharing, Speaker-Listener and Writer – Reader relationship, medium of communication, barriers to communication, accuracy, brevity, clarity and appropriateness in communication.

Writing Skills: Words for general purpose use. Sentence formation and using given set of words. Transforming word usage for different tenses, using words for narrative in first, second & third person. Semantics of connectives, modifiers and models, sentence variety and paragraphs, Cohesion and coupling, structure of basic letters, reports & document preparation introduction to conclusion. Referencing & listing of references.

Speaking Skills: Speech and verbal communication, articulation, paralinguistic's, Pause and its use, formal and informal speaking, debate, extempore and discussion. Task oriented, personal and inter-personal communication.

Reading Comprehension: Kinds and types of texts, abstracting, précis writing and summarizing.

Listening Comprehension: Fluency & speed, impact of pronunciation on comprehension, Intelligent listening,

#### **Teaching methodology:**

1. The Professional Communication course needs to equip the student for oral & written communication in English language and meeting the requirements of situational communication ability.

2. The teacher must teach the course through examples, practice sessions and even the lectures must be conducted in the tutorial mode.

3. The teacher must function as a mentor, guide and facilitator for the student to understand the words that have been identified for practice and their use in different situations be given as the assignment for the student to write and speak with one another.

4. The course has to be taught in small batches of 20 to 25 and in the language lab so that continuous and intense practice is recorded, and the track of the student's progress is maintained on per lecture basis.

5. The Books suggested are as base texts and may be expanded upon for giving larger scope of practice to the students. It is important to promote self learning by asking the students to use the internet for finding language training material and content, which can then be used a classroom tasks.

#### **Text Books & references:**

- 1. Dorothy Adams, Michele Crawford, et et " Everyday English- A course on Communicative English" Level 1 & 2, Cengage India 2009. (with practice CD)
- 2. Bhaskar W. W. S. and Prabhu, N. S. "English Through Reading". Vol I & II MacMillan, 1978.
- 3. D'Souza Eunice and Shaham, G. "Communication Skills in English". Noble Publishing House 1977.
- 4. Fiske , John "Introduction to Communication Studies" Rotledge, London, 1990.

#### **Performance Evaluation & Examination:**

The student will have to perform on per lecture basis and the peer to peer learning and evaluation method is to be used. However, since the students will be given class tests and assignments hence these will have to be corrected and marked by the teachers and the marks made public with formative feedback to the student explaining where the mistake is and what the correct ways to answer the questions are.

Assignments are to be given to reinforce the concepts and extend the practice of words and their usage by the student in different situations, tenses and accounts in first, second or third person.

The Course examination will be practical based and the student will have to be proficient to demonstrate the language capability as will be tested on the basis of question paper sent from the university.